Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Frontiers in cellular and infection microbiology ; 11, 2021.
Article in English | EuropePMC | ID: covidwho-1639808

ABSTRACT

Influenza virus infection induces oxidative stress in host cells by decreasing the intracellular content of glutathione (GSH) and increasing reactive oxygen species (ROS) level. Glucose-6-phosphate dehydrogenase (G6PD) is responsible for the production of reducing equivalents of nicotinamide adenine dinucleotide phosphate (NADPH) that is used to regenerate the reduced form of GSH, thus restoring redox homeostasis. Cells deficient in G6PD display elevated levels of ROS and an increased susceptibility to viral infection, although the consequences of G6PD modulation during viral infection remain to be elucidated. In this study, we demonstrated that influenza virus infection decreases G6PD expression and activity, resulting in an increase in oxidative stress and virus replication. Moreover, the down regulation of G6PD correlated with a decrease in the expression of nuclear factor erythroid 2-related factor 2 (NRF2), a key transcription factor that regulates the expression of the antioxidant response gene network. Also down-regulated in influenza virus infected cells was sirtuin 2 (SIRT2), a NADPH-dependent deacetylase involved in the regulation of G6PD activity. Acetylation of G6PD increased during influenza virus infection in a manner that was strictly dependent on SIRT2 expression. Furthermore, the use of a pharmacological activator of SIRT2 rescued GSH production and NRF2 expression, leading to decreased influenza virus replication. Overall, these data identify a novel strategy used by influenza virus to induce oxidative stress and to favor its replication in host cells. These observations furthermore suggest that manipulation of metabolic and oxidative stress pathways could define new therapeutic strategies to interfere with influenza virus infection.

2.
J Virol Methods ; 287: 114008, 2021 01.
Article in English | MEDLINE | ID: covidwho-907063

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of the COVID-19 pandemic. Although other diagnostic methods have been introduced, detection of viral genes on oro- and nasopharyngeal swabs by reverse-transcription real time-PCR (rRT-PCR) assays is still the gold standard. Efficient viral RNA extraction is a prerequisite for downstream performance of rRT-PCR assays. Currently, several automatic methods that include RNA extraction are available. However, due to the growing demand, a shortage in kit supplies could be experienced in several labs. For these reasons, the use of different commercial or in-house protocols for RNA extraction may increase the possibility to analyze high number of samples. Herein, we compared the efficiency of RNA extraction of three different commercial kits and an in-house extraction protocol using synthetic ssRNA standards of SARS-CoV-2 as well as in oro-nasopharyngeal swabs from six COVID-19-positive patients. It was concluded that tested commercial kits can be used with some modifications for the detection of the SARS-CoV-2 genome by rRT-PCR approaches, although with some differences in RNA yields. Conversely, EXTRAzol reagent was the less efficient due to the phase separation principle at the basis of RNA extraction. Overall, this study offers alternative suitable methods to manually extract RNA that can be taken into account for SARS-CoV-2 detection.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , RNA, Viral/isolation & purification , SARS-CoV-2/isolation & purification , Diagnostic Tests, Routine , Genes, Viral/genetics , Humans , Limit of Detection , Pharynx/virology , RNA, Viral/analysis , RNA, Viral/genetics , Reproducibility of Results , SARS-CoV-2/genetics
3.
J Neurovirol ; 26(3): 311-323, 2020 06.
Article in English | MEDLINE | ID: covidwho-599674

ABSTRACT

Coronavirus disease 2019 (COVID-19), first reported in Wuhan, the capital of Hubei, China, has been associated to a novel coronavirus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In March 2020, the World Health Organization declared the SARS-CoV-2 infection a global pandemic. Soon after, the number of cases soared dramatically, spreading across China and worldwide. Italy has had 12,462 confirmed cases according to the Italian National Institute of Health (ISS) as of March 11, and after the "lockdown" of the entire territory, by May 4, 209,254 cases of COVID-19 and 26,892 associated deaths have been reported. We performed a review to describe, in particular, the origin and the diffusion of COVID-19 in Italy, underlying how the geographical circulation has been heterogeneous and the importance of pathophysiology in the involvement of cardiovascular and neurological clinical manifestations.


Subject(s)
Cardiovascular Diseases/epidemiology , Coronavirus Infections/epidemiology , Cytokine Release Syndrome/epidemiology , Nervous System Diseases/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , Severe Acute Respiratory Syndrome/epidemiology , Age Factors , Betacoronavirus/drug effects , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/mortality , Cardiovascular Diseases/virology , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Coronavirus Infections/transmission , Cytokine Release Syndrome/diagnosis , Cytokine Release Syndrome/mortality , Cytokine Release Syndrome/virology , Geography , Humans , Italy/epidemiology , Nervous System Diseases/diagnosis , Nervous System Diseases/mortality , Nervous System Diseases/virology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Pneumonia, Viral/transmission , Prevalence , SARS-CoV-2 , Severe Acute Respiratory Syndrome/diagnosis , Severe Acute Respiratory Syndrome/mortality , Severe Acute Respiratory Syndrome/transmission , Sex Factors , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL